本章主要结构如下:
- Unsupervised Learning: Introduction
- K-Means Algorithm
- Optimization Objective
- Random Initialization
- Choosing the Number of Clusters
Unsupervised Learning: Introduction
本章开始讲无监督学习,即要让计算机学习无标签数据,而不是此前的标签数据。
在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:
在这里我们有一系列点,却没有标签。因此,我们的训练集可以写成只有$x^{(1)}$,$x^{(2)}$…..一直到$x^{(m)}$。我们没有任何标签$y$。因此,图上画的这些点没有标签信息。也就是说,在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。
至于聚类算法怎么用的,就忽略了先。
K-Means Algorithm
K-means 是最普及的聚类算法,其采用迭代的方式实现,大概分为这么几步:
- 首先选择$K$个随机的点,称为聚类中心(cluster centroids)。
- 对于数据集中的每一个数据,按照距离$K$个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
- 计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。
- 重复直至中心点不再变化。
Optimization Objective
K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此K-均值的代价函数(又称畸变函数 Distortion function)为:
其中 $\mu_{c^{(i)}}$ 代表 $x^{(i)}$ 最近的中心点。迭代的过程中,我们知道,第一个循环是用于减小 $c^{(i)}$ 引起的代价,而第二个循环则是用于减小$\mu_{i}$引起的代价。迭代的过程一定会是每一次迭代都在减小代价函数,不然便是出现了错误。
Random Initialization
在运行K-均值算法的之前,我们首先要随机初始化所有的聚类中心点,下面介绍怎样做:
我们应该选择 $K<m$,即聚类中心点的个数要小于所有训练集实例的数量
随机选择$K$个训练实例,然后令$K$个聚类中心分别与这$K$个训练实例相等
K-均值的一个问题在于,它有可能会停留在一个局部最小值处,而这取决于初始化的情况。
为了解决这个问题,我们通常需要多次运行K-均值算法,每一次都重新进行随机初始化,最后再比较多次运行K-均值的结果,选择代价函数最小的结果。这种方法在$K$较小的时候(2—10)还是可行的,但是如果$K$较大,这么做也可能不会有明显地改善。
Choosing the Number of Clusters
没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题,人工进行选择的。选择的时候思考我们运用K-均值算法聚类的动机是什么,然后选择能最好服务于该目的标聚类数。
当人们在讨论,选择聚类数目的方法时,有一个可能会谈及的方法叫作“肘部法则”。关于“肘部法则”,我们所需要做的是改变$K$值,也就是聚类类别数目的总数。我们用一个聚类来运行K均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数$J$。$K$代表聚类数字。
我们可能会得到一条类似于这样的曲线。像一个人的肘部。这就是“肘部法则”所做的,让我们来看这样一个图,看起来就好像有一个很清楚的肘在那儿。好像人的手臂,如果你伸出你的胳膊,那么这就是你的肩关节、肘关节、手。这就是“肘部法则”。你会发现这种模式,它的畸变值会迅速下降,从1到2,从2到3之后,你会在3的时候达到一个肘点。在此之后,畸变值就下降的非常慢,看起来就像使用3个聚类来进行聚类是正确的,这是因为那个点是曲线的肘点,畸变值下降得很快,$K=3$之后就下降得很慢,那么我们就选$K=3$。当你应用“肘部法则”的时候,如果你得到了一个像上面这样的图,那么这将是一种用来选择聚类个数的合理方法。
例如,我们的 T-恤制造例子中,我们要将用户按照身材聚类,我们可以分成3个尺寸:$S,M,L$,也可以分成5个尺寸$XS,S,M,L,XL$,这样的选择是建立在回答“聚类后我们制造的T-恤是否能较好地适合我们的客户”这个问题的基础上作出的。