Gilbert-Varshamov Bound
Let $d>1$. There is a subset $\mathcal{V}$ of the $d$-dimensional hypercube $\mathcal{H}_d=\{-1,1\}^d$ of size $|\mathcal{V}|\le \exp(d/8)$ such that the $\ell_1$-distance
for all $v \not= v’$ with $v,v’\in \mathcal{V}$.
参考资料:《Chapter2 Minimax lower bounds: the Fano and Le Cam methods》by John Duchi.